top of page

NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS

II. Numerical Methods for ODE

II.1. General Idea of the NM for ODE. Euler's Methods

Content:

  • General idea of the numerical methods for ODE

  • Explicit, implicit, improved Euler's methods

  • Local approximation error

  • A-stability and monotonicity

​

Video:

NMDE Part1
NMDE Part2
NMDE Part3
NMDE En Lec2 Part1
NMDE En Lec2 Part2

II.2. Runge-Kutta Methods

Content:

  • Idea of the Runge--Kutta methods

  • Butcher's tableaux

  • Derivation of 1- and 2-stage Runge--Kutta methods

  • Study of A-stability and monotonicity of the Runge--Kutta methods

  • Adaptive Runge--Kutta methods

Video:

NMDE En Lec4 Part1
NMDE En Lec4 Part2
NMDE EN 7 1
NMDE EN 7 2
NMDE EN 7 3

II.3. Adams methods

Content:

  • Idea of the multi-step methods

  • Derivation of Adams--Bashforth methods

  • Derivation of Adams--Moulton methods

  • Practical questions, related to the implementation of multi-step methods

  • Idea of predictor--corrector methods

Video:

NMDE En Lec3 Part1
NMDE En Lec3 Part2
NMDE En Lec4 Part1

II.4 Error and convergence of the methods

Content:

  • Why do we need practical error estimates and estimates of the order of convergence?

  • Runge's method for practical error estimate

  • Runge's method for practical estimate of the order of convergence

  • Lax theorem for one-step methods for ODE

Video:

NMDE EN Lec7 4

III. Finite difference methods for PDE

III.1. Idea of finite difference methods. Finite difference methods for parabolic problems

Content:

  • Introduction to PDEs; problems, described by PDEs

  • Conservation laws, continuity equation

  • Diffusion equation---derivation, physical interpretation

  • Finite difference schemes---general concepts

  • Explicit, strictly implicit scheme, Crank--Nikolson scheme for the diffusion equation---derivation, local approximation error, stability

  • Dirichlet, Neumann, Robin boundary conditions; increasing the order of approximation for Neumann and Robin boundary conditions

Video:

NMDE EN Lec 8 1
NMDE EN Lec 8 2
NMDE EN Lec 8 3

III.2. Stability of finite difference schemes

Content:

  • Definition of stability in a given norm

  • Stability with respect to initial conditions, boundary conditions, right-hand side

  • Maximum principle and stability in discrete maximum norm

  • Method of harmonics and stability in discrete l2-norm

  • General form of Lax theorem

Video:

NMDE EN Lec 9 1
NMDE EN Lec 9 2
NMDE EN Lec 10 1
NMDE EN Lec 10 2

III.3. Finite difference method for hyperbolic equations

Content:

  • Transport equation--derivation, physical interpretation

  • First order accurate schemes for the transport equation---stability (in maximum norm) and arising problems

  • Lax-Wendroff scheme for the transport equation with second order of accuracy---study of stability (in l2-norm) and arising problems

  • Finite difference methods for the string equation

Video:

NMDE EN Lec 11 1
NMDE EN Lec 11 2
NMDE EN Lec 11 3

©2021-2023 by nice-math. 

bottom of page